Python 机器学习指南:从零基础到大师级,你的 AI 梦想从此起航

第一章:Python基础知识
在开始机器学习之前,你需要掌握一些 python 基础知识。本章涵盖了 Python 的基本语法、数据类型、控制结构和函数等内容。如果你已经熟悉 Python,可以跳过本章。
# 注释
# 变量
x = 5
y = "Hello, world!"
# 数据类型
print(type(x))# <class "int">
print(type(y))# <class "str">
# 控制结构
if x > 0:
print("x is positive.")
else:
print("x is not positive.")
# 函数
def my_function(x):
return x * 2
print(my_function(5))# 10第二章:机器学习基础
本章将介绍机器学习的基础知识,包括机器学习的定义、分类、评估方法等。你将了解到机器学习可以做什么,以及如何选择合适的机器学习算法。
# 导入必要的库
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 加载数据
data = pd.read_csv("data.csv")
# 划分训练集和测试集
X = data.drop("target", axis=1)# 特征数据
y = data["target"]# 标签数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)
# 评估模型
score = model.score(X_test, y_test)
print("准确率:", score)
# 预测
predictions = model.predict(X_test)第三章:常用机器学习算法
本章将介绍一些常用的机器学习算法,包括线性回归、逻辑回归、决策树、支持向量机、随机森林等。你将了解到每种算法的原理和特点,以及如何使用这些算法来解决实际问题。
# 导入必要的库
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LoGISticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
# 加载数据
data = pd.read_csv("data.csv")
# 划分训练集和测试集
X = data.drop("target", axis=1)# 特征数据
y = data["target"]# 标签数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练模型
models = [
LinearRegression(),
LogisticRegression(),
DecisionTreeClassifier(),
SVC(),
RandomForestClassifier()
]
for model in models:
model.fit(X_train, y_train)
# 评估模型
score = model.score(X_test, y_test)
print(model.__class__.__name__, "准确率:", score)第四章:深度学习
本章将介绍深度学习的基本知识,包括神经网络的结构和原理、常用的激活函数、损失函数和优化算法等。你将了解到深度学习可以做什么,以及如何使用深度学习来解决实际问题。
# 导入必要的库
import Tensorflow as tf
# 定义神经网络模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")
])
# 编译模型
model.compile(optimizer="adam", loss="sparse_cateGorical_crossentropy", metrics=["accuracy"])
# 训练模型
model.fit(X_train, y_train, epochs=10)
# 评估模型
score = model.evaluate(X_test, y_test)
print("准确率:", score[1])
# 预测
predictions = model.predict(X_test)以上就是Python 机器学习指南:从零基础到大师级,你的 AI 梦想从此起航的详细内容,更多请关注php中文网其它相关文章!
《无所畏惧》温莉的结局是什么
时间:2023-11-25
《无所畏惧》刘铭的结局是什么
时间:2023-11-25
《无所畏惧》罗英子和陈硕最后在一起了吗
时间:2023-11-25
《宁安如梦》 姜雪宁是如何设计让薛姝去和亲
时间:2023-11-25
《宁安如梦》薛姝为了不和亲做了什么
时间:2023-11-25
《宁安如梦》为什么姜雪蕙只能当侧妃
时间:2023-11-25