绕过 GIL 的雷区:并发 Python 的冒险指南

了解 GIL 的局限性
GIL 是 Python 中的一个机制,它一次只允许一个线程执行字节码。这对于内存管理和线程安全至关重要,但它也限制了多线程程序的并行性。GIL 主要影响 CPU 密集型任务,因为它们无法并行执行。
绕过 GIL 的技巧
有几种方法可以绕过 GIL 的限制:
import multiprocessing def task(n): # 执行 CPU 密集型任务 return n * n if __name__ == "__main__": pool = multiprocessing.Pool(4)# 创建一个进程池 results = pool.map(task, range(10000))# 使用进程池执行任务 print(results)
import concurrent.futures def task(n): # 执行 CPU 密集型任务 return n * n if __name__ == "__main__": with concurrent.futures.ThreadPoolExecutor() as executor: results = executor.map(task, range(10000))# 使用 GIL 友好的线程池执行任务 print(results)
#include <Python.h>
static PyObject* task(PyObject* self, PyObject* args) {
int n;
if (!PyArg_ParseTuple(args, "i", &n)) {
return NULL;
}
// 执行 CPU 密集型任务
int result = n * n;
return Py_BuildValue("i", result);
}
static PyMethodDef methods[] = {
{"task", task, METH_VARARGS, "Task function"},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"mymodule",
NULL,
-1,
methods
};
PyMODINIT_FUNC PyInit_mymodule(void) {
return PyModule_Create(&module);
}import asyncio async def task(n): # 执行 CPU 密集型任务 return n * n async def main(): tasks = [task(i) for i in range(10000)] results = await asyncio.gather(*tasks)# 并行执行任务 print(results) if __name__ == "__main__": asyncio.run(main())
注意事项
在绕过 GIL 时,需要注意以下几点:
结论
绕过 GIL 是提高 Python 并发性的一种强大方法,但它也需要谨慎使用。通过使用多进程、GIL 友好的库、C 扩展或 asyncio,您可以绕过 GIL 的限制,同时避免潜在的陷阱。通过仔细考虑和适当的实现,您可以充分利用 Python 的并发功能,提高应用程序的性能和可扩展性。
以上就是绕过 GIL 的雷区:并发 Python 的冒险指南的详细内容,更多请关注php中文网其它相关文章!
《无所畏惧》温莉的结局是什么
时间:2023-11-25
《无所畏惧》刘铭的结局是什么
时间:2023-11-25
《无所畏惧》罗英子和陈硕最后在一起了吗
时间:2023-11-25
《宁安如梦》 姜雪宁是如何设计让薛姝去和亲
时间:2023-11-25
《宁安如梦》薛姝为了不和亲做了什么
时间:2023-11-25
《宁安如梦》为什么姜雪蕙只能当侧妃
时间:2023-11-25